Exploring the Limits of Computation

ELC Complexity Theory Intro. Seminar Series

Algorithmic Approaches to Lower Bounds of Computational Complexity

Akinori Kawachi
Dept. of Math and Comp. Sci.
Tokyo Institute of Technology

ELC is supported by Grant-in-Aid for Scientific Research on Innovative Areas, MEXT, Japan

ELC Tokyo Complexity Workshop (Mar. 14-17, Shinagawa Prince Hotel)

#participants > 150!!
Thank you for coming!

Today's Topic

Two Approaches

High-level approach: Discuss "Higher class vs. P"

Low-level approach: Discuss "NP vs. Lower class"

Circuit Complexity

Major Strategy in Two Approaches

Proving circuit complexity for classes:

No poly-size circuit can compute some NP problem

$$(NP \not\subset P/poly \rightarrow NP \neq P)$$

computable by poly-size circuits ≈ class P

Circuits

Why not close the gap?

High-level approach

Low-level approach

From High Level

NP to higher complexity classes!

Key Fact: Almost all functions are hard!

Fact

 $\exists f:\{0,1\}^n \rightarrow \{0,1\} \text{ s.t. no } 2^{0.1n}\text{-size circuit can compute f.}$

Furthermore,

 $Pr_f[No 2^{0.1n}$ -size circuit can compute $f] \ge 1 - o(1)$.

 $(f:\{0,1\}^n \rightarrow \{0,1\})$ is uniformly at random.)

Proof is easy: $\#f = 2^{2^n} >> \#(2^{0.1n} - \text{size circuits}) = 2^{O(2^{0.1n})}$

Hard functions exist!
How find them near NP??

Class NP

Class NP $L \subseteq NP$ $x \in L \longrightarrow \exists w \ V(x,w) = 1$ $x \notin L \longrightarrow \forall w \ V(x,w) = 0$ |w| = poly(|x|)V: poly-time comp.

e.g., SAT
$$\subseteq$$
 NP

$$\Phi(x_1,...,x_n) \in SAT \longrightarrow \exists a_1,...,a_n \Phi(a_1,...,a_n)=1$$

$$x_1 \land x_2 \land x_3 \in SAT$$

$$x_1 \land \neg x_1 \land x_3 \notin SAT$$

Class NP

Generalization of NP

Class $\Sigma_2 P$ $L \subseteq \Sigma_2 P$ $x \in L \longrightarrow \exists w_1 \forall w_2 \ V(x, w_1, w_2) = 1$ $x \notin L \longrightarrow \forall w_1 \exists w_2 \ V(x, w_1, w_2) = 0$ $|w_1|, |w_2| = poly(|x|)$ V: poly-time comp.

e.g.,
$$\Sigma_2 SAT \subseteq \Sigma_2 P$$

 $\Phi(x_1,...,x_n,y_1,...,y_m) \in \Sigma_2 SAT$
 $\Rightarrow \exists a_1,...,a_n, \forall b_1,...,b_n \Phi(a_1,...,a_n,b_1,...,b_m)=1$

Class $\Sigma_2 P$

Generalization of NP

Class Σ_kP $L \in \Sigma_k P$ x∈L ⇒ $\exists w_1 \forall w_2 ... \exists w_k V(x, w_1, ..., w_k) = 1$ x∉L ⇒ $\forall w_1 \exists w_2 ... \forall w_k V(x, w_1, ..., w_k) = 0$ $|w_1|,...,|w_k| = poly(|x|)$

V: poly-time comp.

Polynomial-time Hierarchy $PH = \bigcup_{k=1}^{\infty} \Sigma_k P$

PH has a hard problem!

Theorem [Kannan, '82]

No n^{100} -size circuit can compute some Σ_4 P problem.

Problem: HARD

Given: n-bit string x

Decide: $f_{HARD}(x) = 1$?

 f_{HARD} is a Boolean

 \forall C \in {n¹⁰⁰-size circuit} \exists y \in {0,1}ⁿ

s.t. $C(y) \neq f_{HARD}(y)$

action which

no n¹⁰⁰-size circuit can compute.

Definition of f_{HARD} (Sketch)

1. Computability

f_{HARD} is computable by n²⁰⁰-size circuits

2. Hardness

f_{HARD} is not computable by n¹⁰⁰-size circuits

3. Uniqueness

f_{HARD} is lex 1st func. satisfying above two

Definition of f_{HARD}

$$f_{HARD}(x) = 1$$

- - [2.] \forall circuit C' (size(C')< n^{100}) $\exists z \in \{0,1\}^n$ s.t. $C(z) \neq C'(z)$ and
 - [3.] \forall circuit C" (C"<C in lex order) \exists circuit C''' (size(C''')<n¹⁰⁰) $\forall z \in \{0,1\}^n \ C''(z) = C'''(z)$

Improvement to lower class

Theorem [Kannan, '82]

No n^{100} -size circuit can compute some $\Sigma_4 P$ problem.

Improvement

Theorem [Kannan, '82]

No n^{100} -size circuit can compute some $\Sigma_2 P$ problem.

Circuit lower bound in $\Sigma_4 P \rightarrow \Sigma_2 P$

Proof Idea: Win-Win Strategy

• If n³⁰⁰-size circuit can compute SAT

• If n³⁰⁰-size circuit cannot compute SAT

Proof Idea: Win-Win Strategy

• If n³⁰⁰-size circuit can compute SAT

Key Tool: Collapse of PH

Theorem [Karp & Lipton, '82]

n³⁰⁰-size circuit can compute SAT → PH = Σ_2 P (in fact, PH = Σ_2 P ∩ Π_2 P)

If n³⁰⁰-size circuit can compute SAT

If n³⁰⁰-size circuit can compute SAT

Theorem [Karp & Lipton, '82]

n³⁰⁰-size circuit C can compute SAT → PH =
$$\Sigma_2$$
P (in fact, PH = Σ_2 P ∩ Π_2 P)

Idea Circuit C for SAT can eliminate quantifiers!

If
$$L \subseteq \Sigma_k P$$
 $X \in L$

Need to find the circuit C

to compute V_{C} by $TM!$
 $V_{C}(x) = 1$

 Σ_2 P is enough to find C!

Proof (circuit lower bound in Σ_2 P)

- If n³⁰⁰-size circuit can compute SAT
 - $-PH = \Sigma_4 P = \Sigma_2 P$ [Karp & Lipton '82]
 - $-\Sigma_{4}P$ has hard problem against SIZE(n¹⁰⁰)
 - Thus, Σ_2 P has, too.
- If n³⁰⁰-size circuit cannot compute SAT
 - SAT∈NP
 - Thus, NP has hard problem against SIZE(n³⁰⁰)

 $\Sigma_2 P \not\subset SIZE(n^{100})$ or $NP \not\subset SIZE(n^{300})$

Summary: Kannan's argument

- Directly defines hard problem in $\Sigma_{\Delta}P$
 - By power of $\Sigma_4 P$
- Improves by Karp-Lipton collapse
 - SAT ∈ SIZE(n³⁰⁰) → Σ_4 P = Σ_2 P $\not\subset$ SIZE(n¹⁰⁰)
 - SAT \notin SIZE(n³⁰⁰) → SAT \in NP \notin SIZE(n³⁰⁰)
- Improves further by deeper collapse
 - Requires algorithm finding the circuit C for SAT (in Karp-Lipton, Σ_2 P-algorithm works)

Further Improvements for Fixed Polynomial Lower Bounds

No n

Our Leader!

pmpute some $\Sigma^2 P$ problem. η $\Pi^2 P$ problem)

Zero-error prob. poly-time with NP oracle

Theorem [Koebler & Watanabe, '94]

No n¹⁰⁰-size circuit can compute some ZPP^{NP} problem.

Circuit lower bound in $\Sigma_2 P \rightarrow ZPP^{NP}$

Class P^{NP}

Class ZPP^{NP}

Koebler & Watanabe's argument

- If n³⁰⁰-size circuit can compute SAT
 - $-PH = ZPP^{NP}$ (cf. Karp-Lipton: $PH = \Sigma_2 P$)
 - Finding the circuit C computing SAT in ZPP^{NP}
 - Thus, ZPP^{NP} ⊄ $SIZE(n^{100})$
- If n³⁰⁰-size circuit cannot compute SAT
 - SAT∈NP
 - Thus, NP ⊄ SIZE(n³⁰⁰)

 $ZPP^{NP} \not\subset SIZE(n^{100})$ or $NP \not\subset SIZE(n^{300})$

Koebler & Watanabe's argument ≈ Circuit Learning Algorithm [Bshouty, Cleve, Gavalda, Kannan & Tamon '96]

- Assumption: ∃ n³⁰⁰-size circuit computing SAT
 - How find it by ZPP^{NP}-algorithm?

Idea

"Learn" it with power of NP oracle by binary-search in set of n³⁰⁰-size circuits

Search in set of circuits

desc. length of n^{300} -size circuits = $O(n^{300}log n)$ $\{0,1\}^{p(n)}$ Candidate set S₁ in 1st round set of n³⁰⁰-size circuits Circuit C computing SAT

Search in set of circuits

 ${0,1}^{p(n)}$ set of n³⁰⁰-size circuits

 ${0,1}^{p(n)}$

Query to NP oracle

Query to NP oracle

Hopefully...

But, could be...

Idea: generate φ against majority

Idea: generate φ against majority of many samples

Idea: generate φ against majority of many samples

Koebler-Watanabe argument

- If n³⁰⁰-size circuit can compute SAT
 - $-PH = ZPP^{NP}$ (cf. Karp-Lipton: $PH = \Sigma_2 P$)
 - Finding the circuit C computing SAT in ZPP^{NP}
 - Thus, ZPP^{NP} ⊄ $SIZE(n^{100})$
- If n³⁰⁰-size circuit cannot compute SAT
 - SAT∈NP
 - Thus, NP ⊄ SIZE(n³⁰⁰)

 $ZPP^{NP} \not\subset SIZE(n^{100})$ or $NP \not\subset SIZE(n^{300})$

Summary

- Koebler & Watanabe's argument
 - ≈ Circuit learning algorithm in ZPP^{NP}
 - Lower-class algorithms improve the result!
 - Learning approach is useful [cf. Gutfreund & K. 2010]
- Open Problem: P^{NP}-learning algorithm?
 - cf. Conjecture: $ZPP^{NP} = P^{NP}$
 - ZPP^{NP}-algorithm with pallalel queries (ZPP_{||}^{NP})?
 - Relativizable argument doesn't work

[Aaronson '06].

Recent Breakthroughs

Theorem [Williams '11]

No ACC⁰ circuit can compute some NEXP problem

```
ACC<sup>0</sup> = constant-depth poly-size circuit with 'counter'
Gate set = \{\Lambda, V, \neg, Mod_m\} for any fixed m
with unbounded fan-in
```

```
NEXP = nondet. exp-time comp.
(cf. NP = nondet. poly-time comp.)
```

New technique:

Fast algorithm computing CKT-SAT implies circuit LBs!

C CKT-SAT (for circuit class C)

- Given: n-input circuit C: $\{0,1\}^n \rightarrow \{0,1\}$ of class C (e.g. P/poly, ACC⁰)
- Decide: $\exists x \text{ s.t. } C(x)=1$

- brute-force algorithm needs O(m 2ⁿ) time
 - m = circuit size |C|

Overvie Suppose C = P/poly ument

1st step

 \exists Fast (exp-time) algorithm for C CKT-SAT → NEXP ⊄ C

2nd step

∃ Fast (exp-time) algorithm for ACC⁰ CKT-SAT

Proof Overview:

Fast CKT-SAT algorithm → NEXP lower bounds

Assumption

NEXP ⊂ P/poly & ∃ fast CKT-SAT algorithm

 $NTIME[2^n] \subseteq NTIME[2^n/n]$

Goal

 $\mathsf{NTIME}[2^n] \subseteq \mathsf{NTIME}[2^n/n^8],$ contradicts the Nondet. Hierarchy Theorem!

Ingredients

- 1. efficient & local reduction to 3SAT [Tourlakis '00, Fortnow, Lipton, van Melkebeek, & Viglas '05]
- 2. witness circuits for NEXP problem

[Impagliazzo, Kabanets & Wigderson '02]

Efficient & Local Reduction to 3SAT

Theorem [Tourlakis '00, Fortnow, Lipton, van Melkebeek & Viglas '05]

 \exists (2ⁿ poly(n))-time reduction R s.t. \forall L ∈ NTIME[2ⁿ],

 \exists poly(n)-time algorithm M s.t.

Witness Circuit for NFXP

Theorem [Impagliazzo, Kabanets & Wigderson '02]

NEXP ⊂ P/poly → NEXP has poly-size witness circuit

Class NEXP

L∈**N**EXP

$$x \in L \longrightarrow \exists w R(x,w) = 1$$

 $x \notin L \longrightarrow \forall w R(x,w) = 0$

$$x \notin L \longrightarrow \forall w R(x,w) = 0$$

$$|w| = 2^{\text{poly}(|x|)}$$

Exponentially long witness!

Witness Circuit for NFXP

Theorem [Impagliazzo, Kabanets & Wigderson '02]

NEXP ⊂ P/poly → NEXP has poly-size witness circuit

Class NEXP

poly-size witness circuit

L∈**N**EXP

$$x \in L \implies \exists W_x R(x,W_x(0...0)...W_x(1...1)) = 1$$

 $x \notin L \implies \forall W_x R(x,W_x(0...0)...W_x(1...1)) = 0$

$$x \notin L \longrightarrow \forall W_x R(x,W_x(0...0)...W_x(1...1)) = 0$$

$$|W| = poly(|x|)$$

Fast Algorithm for $\forall L \subseteq NTIME[2^n]$

Algoritm: Hierarchy Breaker

Input: $x \in \{0,1\}^n$

- 1. Nondet.ly guess witness circuit W_x
- 2. Construct a circuit D_{Wx} : $\{0,1\}^{n+O(\log n)} \rightarrow \{0,1\}$
- s.t. $\exists i$, $D_{Wx}(i) = 1 \Leftrightarrow x \notin L$ (next slide for details)
- 3. Apply CKT-SAT algorithm A to $A(D_{Wx})$
- Output "Yes" \Leftrightarrow A(D_{Wx}) = 0 ($\Leftrightarrow \forall i, D_{Wx}(i) = 0$)

Running Time = $O(2^n/n^8)$

→ Contradiction with Nondet. Hierachy Theorem!

2. Construct a circuit D_{Wx} : $\{0,1\}^{n+O(\log n)} \rightarrow \{0,1\}$ s.t. $\exists i, D_{Wx}(i) = 1 \Leftrightarrow x \notin L$

Circuit D_{wx}

 $\varphi_{x} \in SAT \Leftrightarrow x \in L$

Input: $i \in \{0,1\}^{n+O(\log n)}$

1. Print i-th clause C_i of ϕ_x by M

- 2. Check if C_i is NOT satisfied by W_x
- 3. Output $1 \Leftrightarrow C_i$ is NOT satisfied

What's D_{wx} doing?

Case: φ_v is NOT satisfiable by any W_v Not Sat. by W_x! **UNSAT!** Sat. by W_x Sat. by W_x $\neg x_4 \lor x_5 \lor x_{44} \land x_5 \lor x_5 \lor x_5 \land x_4 \lor \neg x_5 \lor x_{44}$ W_x is inconsistent = D_{Wx} is SAT Sat. by W_x Sat. by W_x Sat. by W_x SAT! \forall clause C_i sat. $\Leftrightarrow \forall i$, $D_{Wx}(i) = 0$

Fast Algorithm for $\forall L \subseteq NTIME[2^n]$

Algoritm: Hierarchy Breaker

Input:
$$x \in \{0,1\}^n$$

- 1. Nondet.ly guess witness circuit W_x
- 2. Construct a circuit D_{Wx} : $\{0,1\}^{n+O(\log n)} \rightarrow \{0,1\}$
- s.t. $\exists i$, $D_{Wx}(i) = 1 \Leftrightarrow x \notin L$
- 3. Apply CKT-SAT algorithm A to $A(D_{Wx})$;
- Output "Yes" \Leftrightarrow A(D_{Wx}) = 0 ($\Leftrightarrow \forall i, D_{Wx}(i) = 0$)

Running Time = $O(2^n/n^8)$

→ Contradiction with Nondet. Hierachy Theorem!

Summary

- Williams' argument
 - ≈ fast nondet. algorithm from CKT-SAT

- Open Problem: Fast CKT-SAT algorithms?
 - $-NC^1$, or P/poly?
 - Algebrization barrier in NEXP vs. P/poly[Aaronson & Wigderson '08].

Concluding Remarks

- High-level approach involves algorithms
 (in bizarre computing models)
 - Koebler-Watanabe: n¹⁰⁰-size lower bound in ZPP^{NP}
 - ZPP^{NP} algorithm for circuit learning
 - Williams: superpoly-size ACC⁰ lower bound in NEXP
 - Fast non-det. algorithm from CKT-SAT
- "Hardness" is not enough, must put it into NP!
 - Algorithms!