Exploring the

Limits of
Computation

ELC Complexity Theory

Intro. Seminar Series

Algorithmic Approaches to Lower Bounds of Computational Complexity

Akinori Kawachi
Dept. of Math and Comp. Sci.
Tokyo Institute of Technology

ELC is supported by Grant-in-Aid for Scientific Research on Innovative Areas, MEXT, Japan

ELC Tokyo Complexity Workshop

 (Mar. 14-17, Shinagawa Prince Hotel)
\#participants > 150!!
Thank you for coming!

Today’s Topic

Two Approaches

High-level approach: Discuss "Higher class vs. P"

Low-level approach: Discuss "NP vs. Lower class"

Circuit Complexity

Major Strategy in Two Approaches

Proving circuit complexity for classes:

No poly-size circuit can compute some NP problem

$$
\begin{gathered}
N P \neq P \\
(N P \not \subset P / \text { poly } \rightarrow N P \neq P)
\end{gathered}
$$

computable by poly-size circuits
\approx class P

Circuits

Gate set $=\{\wedge, \vee, \neg\}$
Fan-in of $\wedge \& \vee=2$

$$
\text { of } \neg=1
$$

Fan-out $=$ unbounded

Why not close the gap?

From High Level

NP to higher complexity classes!

Key Fact:

Almost all functions are hard!

Fact

$\exists \mathrm{f}:\{0,1\}^{\mathrm{n}} \rightarrow\{0,1\}$ s.t. no $2^{0.1 \mathrm{n}}$-size circuit can compute f.

> Furthermore,
$\operatorname{Pr}_{f}\left[\right.$ No $2^{0.1 n}$-size circuit can compute f$] \geq 1$ - o(1).
(f: $\{0,1\}^{\mathrm{n}} \rightarrow\{0,1\}$ is uniformly at random.)
Proof is easy: $\# f=2^{2^{n}} \gg \#\left(2^{0.1 n}\right.$-size circuits $)=2^{O}\left(2^{0.1 n}\right)$

Hard functions exist! How find them near NP??

Class NP

Class NP

$L \in N P$

$$
\begin{aligned}
x \in L \longmapsto & \exists w V(x, w)=1 \\
x \notin L \longmapsto & \forall w V(x, w)=0 \\
& |w|=\text { poly }(|x|) \\
& V: \text { poly-time comp. } .
\end{aligned}
$$

e.g., SAT $\in N P$

$$
\begin{aligned}
& \Phi\left(x_{1}, \ldots, x_{n}\right) \in S A T \Longleftrightarrow \exists a_{1}, \ldots, a \\
& x_{1} \wedge x_{2} \wedge x_{3} \in S A T \\
& x_{1} \wedge \neg x_{1} \wedge x_{3} \notin S A T
\end{aligned}
$$

Class NP

Input: $\Phi\left(x_{1}, x_{2}, x_{3}\right)=x_{1} \wedge x_{2} \wedge \neg x_{3}$

Yes, $(1,1,0)$!
$\Phi(1,1,0)=1$
Yes!

Generalization of NP

Class $\Sigma_{2} \mathrm{P}$

$L \in \Sigma_{2} P$
$x \in L \Longleftrightarrow \exists w_{1} \forall w_{2} V\left(x, w_{1}, w_{2}\right)=1$
$\mathrm{x} \notin \mathrm{L} \longmapsto \forall \mathrm{w}_{1} \exists \mathrm{w}_{2} \mathrm{~V}\left(\mathrm{x}, \mathrm{w}_{1}, \mathrm{w}_{2}\right)=0$
$\left|w_{1}\right|,\left|w_{2}\right|=\operatorname{poly}(|x|)$
V : poly-time comp.
e.g., $\Sigma_{2} S A T \in \Sigma_{2} P$
$\Phi\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right) \in \Sigma_{2} S A T$
$\exists a_{1}, \ldots, a_{n}, \forall b_{1}, \ldots, b_{n} \Phi\left(a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{m}\right)=1$

Class $\Sigma_{2} P$

Generalization of NP

Class Σ_{k} P

$L \in \Sigma_{k} P$

Def

$x \in L$

$$
\exists \mathrm{w}_{1} \forall \mathrm{w}_{2} \ldots \exists \mathrm{w}_{\mathrm{k}} \mathrm{~V}\left(\mathrm{x}, \mathrm{w}_{1}, \ldots, \mathrm{w}_{\mathrm{k}}\right)=1
$$

$x \notin \mathrm{~L}$

$$
\forall \mathrm{w}_{1} \exists \mathrm{w}_{2} \ldots \forall \mathrm{w}_{\mathrm{k}} \mathrm{~V}\left(\mathrm{x}, \mathrm{w}_{1}, \ldots, \mathrm{w}_{\mathrm{k}}\right)=0
$$

$$
\left|w_{1}\right|, \ldots,\left|w_{k}\right|=\operatorname{poly}(|x|)
$$

V : poly-time comp.

Polynomial-time Hierarchy
 $$
P H=\bigcup_{k=1}^{\infty} \Sigma_{k} P
$$

PSPACE PH
\vdots
$\Sigma_{4} \mathrm{P}$
$\Sigma_{3} \mathrm{P}$
$\Sigma_{2} \mathrm{P}$
NP

P

PH has a hard problem!

Theorem [Kannan, '82]

No n^{100}-size circuit can compute some $\Sigma_{4} \mathrm{P}$ problem.

Problem: HARD

Given: n-bit string x
$\forall C \in\left\{\mathrm{n}^{100}\right.$-size circuit $\}$
$\exists y \in\{0,1\}^{n}$
Decide: $\mathrm{f}_{\text {HARD }}(\mathrm{x})=1$? s.t. $\mathrm{C}(\mathrm{y}) \neq \mathrm{f}_{\text {HARD }}(\mathrm{y})$
$f_{\text {HARD }}$ is a Booled notion wnich no \mathbf{n}^{100}-size circuit can compute.

Definition of $\mathrm{f}_{\text {HARD }}$ (Sketch)

1. Computability

$\mathrm{f}_{\text {HARD }}$ is computable by n^{200}-size circuits
2. Hardness
$\mathrm{f}_{\text {HARD }}$ is not computable by n^{100}-size circuits
3. Uniqueness
$f_{\text {HARD }}$ is lex $1^{\text {st }}$ func. satisfying above two

Definition of $f_{\text {HARD }}$

$\mathrm{f}_{\text {HARD }}(\mathrm{x})=1$

Def

[1.] $\exists{ }^{(1)}$ circuit $C\left(\operatorname{size}(C)<n^{200}\right)$ s.t. $C(x)=1$ and
[2.] ∇^{2} circuit $C^{\prime}\left(\operatorname{size}\left(C^{\prime}\right)<n^{100}\right)$

$$
\exists^{3} \in\{0,1\}^{n} \text { s.t. } C(z) \neq C^{\prime}(z) \text { and }
$$

[3.] \forall^{2} circuit $\mathrm{C}^{\prime \prime}\left(\mathrm{C}^{\prime \prime}<\mathrm{C}\right.$ in lex order) \exists^{3} circuit $C^{\prime \prime \prime}\left(\right.$ size $\left.\left(C^{\prime \prime \prime}\right)<n^{100}\right)$

$$
\forall^{4} \in\{0,1\}^{n} C^{\prime \prime}(z)=C^{\prime \prime \prime}(z)
$$

Improvement to lower class

Theorem [Kannan, '82]

No n^{100}-size circuit can compute some $\Sigma_{4} \mathrm{P}$ problem.

Improvement

Theorem [Kannan, '82]

No n^{100}-size circuit can compute some $\Sigma_{2} \mathrm{P}$ problem.

Circuit lower bound in $\Sigma_{4} \mathrm{P} \rightarrow \Sigma_{2} \mathrm{P}$

Proof Idea: Win-Win Strategy

- If n^{300}-size circuit can compute SAT
- If n^{300}-size circuit cannot compute SAT

Proof Idea: Win-Win Strategy

- If n^{300}-size circuit can compute SAT

Key Tool: Collapse of PH

Theorem [Karp \& Lipton, '82] n^{300}-size circuit can compute SAT $\rightarrow \mathrm{PH}=\Sigma_{2} \mathrm{P}$
(in fact, $\mathrm{PH}=\Sigma_{2} \mathrm{P} \cap \Pi_{2} \mathrm{P}$)

If n^{300}-size circuit can compute SAT

If n^{300}-size circuit can compute SAT

Theorem [Karp \& Lipton, '82]

 n^{300}-size circuit C can compute $\mathrm{SAT} \rightarrow \mathrm{PH}=\Sigma_{2} \mathrm{P}$ (in fact, $\mathrm{PH}=\Sigma_{2} \mathrm{P} \cap \Pi_{2} \mathrm{P}$)Idea Circuit C for SAT can eliminate quantifiers!
If $L \in \Sigma_{k} P$

SAT!

Proof (circuit lower bound in $\Sigma_{2} P$)

- If n^{300}-size circuit can compute SAT
$-\mathrm{PH}=\Sigma_{4} \mathrm{P}=\Sigma_{2} \mathrm{P}$ [Karp \& Lipton '82]
$-\Sigma_{4} \mathrm{P}$ has hard problem against $\operatorname{SIZE}\left(\mathrm{n}^{100}\right)$
- Thus, $\Sigma_{2} \mathrm{P}$ has, too.
- If n^{300}-size circuit cannot compute SAT
- SAT $\in N P$
- Thus, NP has hard problem against SIZE(n^{300})

$$
\Sigma_{2} \mathrm{P} \not \subset \operatorname{SIZE}\left(\mathrm{n}^{100}\right) \text { or } \operatorname{NP} \not \subset \operatorname{SIZE}\left(\mathrm{n}^{300}\right)
$$

Summary: Kannan's argument

- Directly defines hard problem in $\Sigma_{4} P$
- By power of $\Sigma_{4} \mathrm{P}$
- Improves by Karp-Lipton collapse
$-\operatorname{SAT} \in \operatorname{SIZE}\left(\mathrm{n}^{300}\right) \rightarrow \Sigma_{4} \mathrm{P}=\Sigma_{2} \mathrm{P} \not \subset \operatorname{SIZE}\left(\mathrm{n}^{100}\right)$
$-\operatorname{SAT} \notin \operatorname{SIZE}\left(\mathrm{n}^{300}\right) \rightarrow$ SAT $\in \operatorname{NP} \not \subset \operatorname{SIZE}\left(\mathrm{n}^{300}\right)$
- Improves further by deeper collapse
- Requires algorithm finding the circuit C for SAT (in Karp-Lipton, $\Sigma_{2} \mathrm{P}$-algorithm works)

Further Improvements for Fixed Polynomial Lower Bounds

Theorem [Koebler \& Watanabe, '94]
No n^{100}-size circuit can compute some $\mathrm{ZPP}{ }^{\text {NP }}$ problem.

Circuit lower bound in $\Sigma_{2} P \rightarrow$ ZPPNP

Class PNP

Class ZPPNP

Class ZPPNP

$L \in Z P P^{N P}$

Koebler \& Watanabe's argument

- If n^{300}-size circuit can compute SAT
$-\mathrm{PH}=$ ZPPNP (cf. Karp-Lipton: $\mathrm{PH}=\Sigma_{2} \mathrm{P}$)
- Finding the circuit C computing SAT in ZPPNP
- Thus, ZPP ${ }^{\text {NP }} \not \subset \operatorname{SIZE}\left(\mathrm{n}^{100}\right)$
- If n^{300}-size circuit cannot compute SAT
- SATENP
- Thus, NP $\not \subset \operatorname{SIZE}\left(\mathrm{n}^{300}\right)$
$Z P P^{N P} \not \subset \operatorname{SIZE}\left(\mathrm{n}^{100}\right)$ or $\operatorname{NP} \not \subset \operatorname{SIZE}\left(\mathrm{n}^{300}\right)$

Koebler \& Watanabe's argument \approx Circuit Learning Algorithm

[Bshouty, Cleve, Gavalda, Kannan \& Tamon '96]

- Assumption: $\exists n^{300}$-size circuit computing SAT
- How find it by ZPP ${ }^{N P}$-algorithm?

Idea

"Learn" it with power of NP oracle by binary-search in set of n^{300}-size circuits

Search in set of circuits

Search in set of circuits

Search in set of circuits

Search in set of circuits

Search in set of circuits

Search in set of circuits

How to Halve

How to Halve

almost uniform samples from S_{1} [Jerrum, Valiant \& Vazirani '86] set of n^{300}-size circuits

How to Halve

Query to NP oracle

Query to NP oracle

How to Halve

Hopefully...

But, could be...

Idea: generate ϕ against majority

Idea: generate ϕ against majority of many samples

Idea: generate ϕ against majority of many samples

Koebler-Watanabe argument

- If n^{300}-size circuit can compute SAT
$-\mathrm{PH}=$ ZPPNP (cf. Karp-Lipton: $\mathrm{PH}=\Sigma_{2} \mathrm{P}$)
- Finding the circuit C computing SAT in ZPP ${ }^{N P}$
- Thus, ZPP ${ }^{\text {NP }} \not \subset \operatorname{SIZE}\left(\mathrm{n}^{100}\right)$
- If n^{300}-size circuit cannot compute SAT
- SAT $\in N P$
- Thus, NP $\not \subset \operatorname{SIZE}\left(\mathrm{n}^{300}\right)$
$Z P P^{N P} \not \subset \operatorname{SIZE}\left(\mathrm{n}^{100}\right)$ or $\operatorname{NP} \not \subset \operatorname{SIZE}\left(\mathrm{n}^{300}\right)$

Summary

- Koebler \& Watanabe's argument
\approx Circuit learning algorithm in ZPPNP
- Lower-class algorithms improve the result!
- Learning approach is useful [cf. Gutfreund \& K. 2010]
- Open Problem: $\mathrm{P}^{\mathrm{NP}-\text {-learning algorithm? }}$
- cf. Conjecture: $Z^{2 P P^{N P}}=P^{N P}$
- ZPP ${ }^{N P}$-algorithm with pallalel queries (ZPP $_{| |}{ }^{\text {NP }}$)?
- Relativizable argument doesn't work
[Aaronson '06].

Recent Breakthroughs

Theorem [Williams '11]

No ACC^{0} circuit can compute some NEXP problem

ACC ${ }^{0}=$ constant-depth poly-size circuit with 'counter'
Gate set $=\left\{\wedge, \bigvee, \neg, \operatorname{Mod}_{m}\right\}$ for any fixed m with unbounded fan-in

NEXP = nondet. exp-time comp.
(cf. NP = nondet. poly-time comp.)

New technique:
Fast algorithm computing CKT-SAT implies circuit LBs!

C CKT-SAT (for circuit class C)

- Given: n -input circuit $\mathrm{C}:\{0,1\}^{\mathrm{n}} \rightarrow\{0,1\}$ of class C (e.g. P/poly, ACC^{0})
- Decide: \exists x s.t. $C(x)=1$
- brute-force algorithm needs $\mathrm{O}\left(\mathrm{m} \cdot 2^{\mathrm{n}}\right)$ time - m = circuit size $|\mathrm{C}|$

Overvie suppose $C=P /$ poly ument

$1^{\text {st }}$ step

\exists Fast (exp-time) algorithm for C CKT-SAT \rightarrow NEXP $\not \subset C$

$2^{\text {nd }}$ step

\exists Fast (exp-time) algorithm for ACC ${ }^{0}$ CKT-SAT

Proof Overview:

Fast CKT-SAT algorithm \rightarrow NEXP lower bounds

Assumption

NEXP \subset P/poly \& \exists fast CKT-SAT algorithm

Goal

NTIME[$\left.2^{n}\right] \subsetneq$ NTIME[2n/n]

NTIME[$\left.2^{n}\right] \subseteq$ NTIME[$\left.2^{n} / n^{8}\right]$,
contradicts the Nondet. Hierarchy Theorem!

Ingredients

1. efficient \& local reduction to 3SAT [Tourlakis ${ }^{\prime} 00$, Fortnow, Lipton, van Melkebeek, \& Viglas '05]
2. witness circuits for NEXP problem
[Impagliazzo, Kabanets \& Wigderson ‘02]

Efficient \& Local Reduction to 3SAT

Theorem [Tourlakis '00,

Fortnow, Lipton, van Melkebeek \& Viglas '05]
$\exists\left(2^{\mathrm{n}} \cdot \operatorname{poly}(\mathrm{n})\right)$-time reduction R s.t. $\forall \mathrm{L} \in \operatorname{NTIME[2^{n}]\text {,}}$

\exists poly(n)-time algorithm M s.t.

M
i-th clause C_{i}

Witness Circuit for NEXP

Theorem [Impagliazzo, Kabanets \& Wigderson '02]
NEXP $\subset P /$ poly \rightarrow NEXP has poly-size witness circuit

Class NEXP

$L \in N E X P$

$$
\begin{aligned}
& x \in L \longmapsto \exists w R(x, w)=1 \\
& x \nexists L \longmapsto \forall w R(x, w)=0
\end{aligned}
$$

$$
|w|=2^{\operatorname{poly}(|x|)}
$$

Witness Circuit for NEXP

Theorem [Impagliazzo, Kabanets \& Wigderson '02]
NEXP $\subset P /$ poly \rightarrow NEXP has poly-size witness circuit

Class NEXP

$L \in N E X P$

poly-size witness circuit

Def

$$
\begin{gathered}
x \in L \leadsto \exists W_{x} R\left(x, W_{x}(0 \ldots 0) \ldots W_{x}(1 \ldots 1)\right)=1 \\
x \notin L \Rightarrow \forall W_{x} R\left(x, W_{x}(0 \ldots 0) \ldots W_{x}(1 \ldots 1)\right)=0 \\
|W|=\operatorname{poly}(|x|)
\end{gathered}
$$

Fast Algorithm for $\forall L \in \operatorname{NTIME}\left[2^{n}\right]$

Algoritm: Hierarchy Breaker

Input: $x \in\{0,1\}^{n}$

1. Nondet.ly guess witness circuit W_{x}
2. Construct a circuit $D_{W_{x}}:\{0,1\}^{n+0(\log n)} \rightarrow\{0,1\}$

- s.t. $\exists i, D_{W_{x}}(i)=1 \Leftrightarrow x \notin L$ (next slide for details)

3. Apply CKT-SAT algorithm A to $A\left(D_{W_{x}}\right)$

- Output "Yes" $\Leftrightarrow A\left(D_{W_{x}}\right)=0\left(\Leftrightarrow \forall i, D_{W_{x}}(i)=0\right)$

Running Time $=\mathrm{O}\left(2^{n} / n^{8}\right)$
\rightarrow Contradiction with Nondet. Hierachy Theorem!
2. Construct a circuit $D_{W_{x}}:\{0,1\}^{n+0(\log n)} \rightarrow\{0,1\}$

$$
\text { s.t. } \exists i, D_{W x}(i)=1 \Leftrightarrow x \notin L
$$

Circuit $D_{w x}$

Input: $i \in\{0,1\}^{n+0(\log n)}$

1. Print i -th clause C_{i} of ϕ_{x} by M

2. Check if C_{i} is NOT satisfied by W_{x}
3. Output $1 \Leftrightarrow C_{i}$ is NOT satisfied

What's $D_{w_{x}}$ doing?

Case: ϕ_{x} is NOT satisfiable by any W_{x}

Fast Algorithm for $\forall L \in N T I M E\left[2^{n}\right]$

Algoritm: Hierarchy Breaker

Input: $x \in\{0,1\}^{n}$

1. Nondet.ly guess witness circuit W_{x}
2. Construct a circuit $D_{W_{x}}:\{0,1\}^{n+0(\log n)} \rightarrow\{0,1\}$

- s.t. $\exists i, D_{W_{x}}(i)=1 \Leftrightarrow x \notin L$

3. Apply CKT-SAT algorithm A to $A\left(D_{W_{x}}\right)$;

- Output "Yes" $\Leftrightarrow A\left(D_{W_{x}}\right)=0\left(\Leftrightarrow \forall i, D_{W_{x}}(i)=0\right)$

Running Time $=\mathrm{O}\left(2^{n} / n^{8}\right)$
\rightarrow Contradiction with Nondet. Hierachy Theorem!

Summary

- Williams' argument
\approx fast nondet. algorithm from CKT-SAT
- Open Problem: Fast CKT-SAT algorithms?
- NC ${ }^{1}$, or P/poly?
- Algebrization barrier in NEXP vs. P/poly
[Aaronson \& Wigderson ‘08].

Concluding Remarks

- High-level approach involves algorithms (in bizarre computing models)
- Koebler-Watanabe: n^{100}-size lower bound in ZPPNP
- ZPPNP algorithm for circuit learning
- Williams: superpoly-size ACC ${ }^{0}$ lower bound in NEXP
- Fast non-det. algorithm from CKT-SAT
- "Hardness" is not enough, must put it into NP!
- Algorithms!

