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#participants > 150!!

Thank you for coming!



Today’s Topic



Two Approaches

NP  ≠ P
re
la
x

High-level approach: Discuss “Higher class vs. P”

Low-level approach: Discuss “NP vs. Lower class”

re
la
x



Circuit Complexity

Proving circuit complexity for classes:

No poly-size circuit can compute some NP problem

NP ≠ P

(NP ⊄ P/poly � NP ≠ P)

Major Strategy in Two Approaches

computable by 

≈ class P

computable by 

poly-size circuits

≈ class P



Circuits

x3

∧

x1 x2 x4

￢

∨∧

∧

∨

Gate set = {∧, ∨, ￢}

Fan-in of ∧ & ∨ = 2
of ￢ = 1

Fan-out = unbounded

size = 6

depth = 4 

Fan-in = 2

Fan-out = 2



Why not close the gap?

NP P/poly
re
la
x

High-level approach

Low-level approach

re
la
x



From High Level

NP P/poly
re
la
x

NP to higher complexity classes!



Key Fact:

Almost all functions are hard!

∃f:{0,1}n→{0,1} s.t. no 20.1n-size circuit can compute f.

Furthermore,

Prf[ No 20.1n-size circuit can compute f ] ≥ 1 – o(1).

(f:{0,1}n→{0,1} is uniformly at random.)

Fact

Hard functions exist! 

How find them near NP??

Proof is easy: #f = 2    >> #(20.1n-size circuits) = 22n O(20.1n)



Class NP

Class NP

L∈NP

Def

x∊L ∃w V(x,w) = 1

x∉L ∀w V(x,w) = 0

|w| = poly(|x|)

V: poly-time comp.

e.g., SAT∈NP
Φ(x1,…,xn)∊SAT ∃a1,…,an Φ(a1,…,an)=1

x
1
∧x

2
∧ x

3
∊ SAT

x
1
∧￢x

1
∧x

3 
∉SAT



Class NP

Input: Φ(x1,x2,x3) = x1∧x2∧￢x3

P

V

Yes, (1,1,0)!

Φ(1,1,0)=1

Yes!



Generalization of NP

Class Σ2P

L∈ Σ2P

Def

x∊L ∃w1∀w2  V(x,w1,w2) = 1

x∉L ∀w1∃w2  V(x,w1,w2) = 0

|w1|, |w2| = poly(|x|)

V: poly-time comp.

e.g., Σ2SAT∈Σ2P

Φ(x1,…,xn,y1,…,ym)∊Σ2SAT

∃a1,…,an,∀b1,…,bn Φ(a1,…,an,b1,…,bm)=1



Class Σ
2
P

Input: Φ(x1,x2,y1) = x1∧x2∨y1

P
YES

V

Yes,

(x1,x2)=(1,1)!
Φ(1,1,0)

=1
Yes!

PNO

No,

y1=0!



Generalization of NP

Class ΣkP

L∈ ΣkP

Def x∊L

∃w1∀w2 …∃wk V(x,w1,…,wk) = 1

|w1|,…,|wk| = poly(|x|)

V: poly-time comp.

x∉L

∀w1∃w2 …∀wk V(x,w1,…,wk) = 0



PSPACEPSPACE

PHPH

Σ PΣ4P
Σ PΣ3P

Σ PΣ2P

NPNP

Polynomial-time Hierarchy

PH = ∪Σ
k
P

k=1

∞

P



PH has a hard problem!

No n100-size circuit can compute some Σ4P problem.

Theorem [Kannan, ‘82]

Problem: HARD

Given: n-bit string x ∈ {0,1}n

Decide: f
HARD

(x) = 1?

f
HARD

is a Boolean function which 

no n100-size circuit can compute.

∀C ∈{n100-size circuit} 

∃y∈{0,1}n

s.t. C(y) ≠ f
HARD

(y) 



Definition of f
HARD

(Sketch)

1. Computability

fHARD is computable by n200-size circuits

2. Hardness

fHARD is not computable by n100-size circuits

3. Uniqueness

f
HARD

is lex 1st func. satisfying above two



Definition of f
HARD

[1.] ∃circuit C (size(C)<n200) s.t. C(x)=1 and

[2.] ∀circuit C’ (size(C’)<n100)

∃z∊{0,1}n s.t. C(z)≠C’(z) and

[3.] ∀circuit C’’ (C’’<C in lex order)

∃circuit C’’’ (size(C’’’)<n100)

∀z∊{0,1}n C’’(z)=C’’’(z)

①

②

③

④

fHARD(x) = 1

②

③

Def



Improvement to lower class

No n100-size circuit can compute some Σ4P problem.

Theorem [Kannan, ‘82]

Improvement

No n100-size circuit can compute some Σ2P problem.

Theorem [Kannan, ‘82]



PSPACEPSPACE

PHPH

Σ PΣ4P

Σ PΣ3P

Σ PΣ2P

NPNP

Circuit lower bound in Σ
4
P � Σ

2
P

P

Hard problem against 

n100-size circuits



Proof Idea: Win-Win Strategy

• If n300-size circuit can compute SAT

• If n300-size circuit cannot compute SAT



Proof Idea: Win-Win Strategy

• If n300-size circuit can compute SAT



Key Tool: Collapse of PH

n300-size circuit can compute SAT � PH = Σ
2
P

(in fact, PH = Σ2P∩ Π2P)

Theorem [Karp & Lipton, ‘82]



PSPACEPSPACE

PHPH

Σ PΣ4P

Σ PΣ3P

Σ PΣ2P

NPNP

If n300-size circuit can compute SAT

P

Hard problem against 

n100-size circuits



PSPACEPSPACE

NPNP

If n300-size circuit can compute SAT

P

Σ
2
P=PH

Hard problem against 

n100-size circuits



If L∈ ΣkP

x∊L ∃w1…∀wk-1 ∃wk V(x,w1,…,wk-1,wk) = 1

SAT!

∃w1…∀wk-1 VC(x,w1,…,wk-1) = 1

n300-size circuit C can compute SAT � PH = Σ
2
P

(in fact, PH = Σ2P∩ Π2P)

Theorem [Karp & Lipton, ‘82]

VC’(x) = 1

Idea Circuit C for SAT can eliminate quantifiers!

Σ
2
P is enough to find C!

Need to find the circuit C

to compute V
C
’ by TM!



Proof (circuit lower bound in Σ
2
P)

• If n300-size circuit can compute SAT

– PH = Σ4P = Σ2P [Karp & Lipton ‘82] 

– Σ4P has hard problem against SIZE(n100)

– Thus, Σ2P has, too.

• If n300-size circuit cannot compute SAT

– SAT∊NP

– Thus, NP has hard problem against SIZE(n300)

Σ2P ⊄ SIZE(n100) or NP ⊄ SIZE(n300)



Summary: Kannan’s argument

• Directly defines hard problem in Σ
4
P

– By power of Σ4P

• Improves by Karp-Lipton collapse

– SAT ∊ SIZE(n300) � Σ4P = Σ2P ⊄ SIZE(n100)

– SAT ∉ SIZE(n300) � SAT ∊ NP ⊄ SIZE(n300)

• Improves further by deeper collapse

– Requires algorithm finding the circuit C for SAT

(in Karp-Lipton, Σ2P-algorithm works)



Further Improvements

for Fixed Polynomial Lower Bounds

No n100-size circuit can compute some Σ2P problem.

(in fact, Σ2P∩ Π2P problem)

Theorem [Kannan, ‘82]

No n100-size circuit can compute some ZPPNP problem.

Theorem [Koebler & Watanabe, ‘94]

Zero-error prob. poly-time 

with NP oracle

Our Leader!



PHPH

Σ PΣ
2
P

ZPPNPZPPNP

Circuit lower bound in Σ
2
P � ZPPNP

PNPPNP

NPNP

PP

Hard problem against 

n100-size circuits

[Kannan ‘82]

Hard problem against 

n100-size circuits

[Koebler & Watanabe 

‘94]



Class PNP

Class PNP

L∈PNP

Def

Poly-time TM

M

x

0/1

x∊L M(x)=1

NP oracle

(SAT solver)



Class ZPPNP

Class ZPPNP

L∈ZPPNP

Def

NP oracle

(SAT solver)Prob. TM M

x

0/1

x∊L Pr[M(x)=1]=1

x∉L Pr[M(x)=0]=1

E[Time(M)] = poly

Zero

error!



Koebler & Watanabe’s argument

• If n300-size circuit can compute SAT

– PH = ZPPNP (cf. Karp-Lipton: PH = Σ2P)

• Finding the circuit C computing SAT in ZPPNP

– Thus, ZPPNP ⊄ SIZE(n100)

• If n300-size circuit cannot compute SAT

– SAT∊NP

– Thus, NP ⊄ SIZE(n300)

ZPPNP⊄ SIZE(n100) or NP ⊄ SIZE(n300)



Koebler & Watanabe’s argument

≈ Circuit Learning Algorithm
[Bshouty, Cleve, Gavalda, Kannan & Tamon ‘96]

• Assumption: ∃n300-size circuit computing SAT

– How find it by ZPPNP-algorithm?

“Learn” it with power of NP oracle

by binary-search in set of n300-size circuits

Idea



Search in set of circuits

{0,1}p(n)
desc. length of n300-size circuits = O(n300log n)

Circuit C computing SAT

set of n300-size circuits

Candidate set S
1

in 1st round



Search in set of circuits

{0,1}p(n)

set of n300-size circuits



Search in set of circuits

{0,1}p(n)



Search in set of circuits

{0,1}p(n) Candidate set S
2

in 2nd round

E[|S
2
|] < |S

1
|/2



Search in set of circuits

{0,1}p(n)



Search in set of circuits

{0,1}p(n)

E[# rounds] < O(p(n)) = O(n300log n)

Candidate set S
3

E[|S
3
|] < |S

2
|/2



How to Halve

{0,1}p(n)

set of n300-size circuits

Candidate set S
1

in 1st round



How to Halve

{0,1}p(n)

set of n300-size circuits

almost uniform samples from S1

[Jerrum, Valiant & Vazirani ‘86]



How to Halve

{0,1}p(n)

set of n300-size circuits

Ask NP oracle

whether C
1

computes SAT!

C
1



Query to NP oracle

Prob. TM NP oracle

“Does C1 compute SAT?”

“C1 computes SAT!”

“Counterexample is φ”

(C1(φ) ≠ SAT(φ))

or



Query to NP oracle

Prob. TM NP oracle

∃φ [ C1(φ)≠SAT(φ) ]

“No”

“Yes”

or No counterexample!

∃counterexample…

Repeating queries,

generate 

counterexample φ



How to Halve

{0,1}p(n)

set of n300-size circuits

C1 doesn’t compute SAT.

Counterexample is φ.

(say, C1(φ) = 0 but φ∈SAT)

C
1

Set S
2

:= 

S
1

∩ {C: computes SAT(φ)}



Hopefully…

{0,1}p(n)
Candidate set S

2

in 2nd round:

C(φ) = 1 & φ∈SAT

set of n300-size circuits

Killed by φ:

C(φ) = 0 but

φ∈SAT



But, could be…

{0,1}p(n)
Candidate set S

2

in 2nd round:

C(φ) = 1 & φ∈SAT

Killed by φ:

C(φ) = 0 but

φ∈SAT

set of n300-size circuits



Idea: generate φ against majority

of many samples

{0,1}p(n)

set of n300-size circuits

Ask NP oracle

whether Maj(C
1
,…,C

48n
) 

computes SAT!



Idea: generate φ against majority

of many samples

{0,1}p(n)

set of n300-size circuits

Maj(C
1
,…,C

48n
) doesn’t compute SAT.

Counterexample is φ.



Idea: generate φ against majority

of many samples

{0,1}p(n)

set of n300-size circuits

Maj(C
1
,…,C

48n
) doesn’t compute SAT.

Counterexample is φ.

C(φ) = 0 C(φ) = 1
φ killed 

majority!!

Set S
2

:= 

S
1

∩ {C: computes SAT(φ)}

(expects to halve S
1 

or less)



Koebler-Watanabe argument

• If n300-size circuit can compute SAT

– PH = ZPPNP (cf. Karp-Lipton: PH = Σ2P)

• Finding the circuit C computing SAT in ZPPNP

– Thus, ZPPNP ⊄ SIZE(n100)

• If n300-size circuit cannot compute SAT

– SAT∊NP

– Thus, NP ⊄ SIZE(n300)

ZPPNP⊄ SIZE(n100) or NP ⊄ SIZE(n300)



Summary

• Koebler & Watanabe’s argument

≈ Circuit learning algorithm in ZPPNP

– Lower-class algorithms improve the result!

– Learning approach is useful [cf. Gutfreund & K. 2010]

• Open Problem: PNP-learning algorithm?

– cf. Conjecture: ZPPNP = PNP

– ZPPNP-algorithm with pallalel queries (ZPP||
NP)?

– Relativizable argument doesn’t work 

[Aaronson ‘06].



Recent Breakthroughs

No ACC0 circuit can compute some NEXP problem

Theorem [Williams ’11]

New technique:

Fast algorithm computing CKT-SAT implies circuit LBs!

ACC0 = constant-depth poly-size circuit with ‘counter’ 

Gate set = {∧, ∨, ￢, Mod
m

} for any fixed m

with unbounded fan-in

NEXP = nondet. exp-time comp.

(cf. NP = nondet. poly-time comp.) 



CKT-SAT (for circuit class )

• Given: n-input circuit C: {0,1}n→{0,1}

of class � (e.g. P/poly, ACC0)

• Decide: ∃x s.t. C(x)=1

• brute-force algorithm needs O(m・2n) time

– m = circuit size |C|



Overview: Williams’ argument

∃Fast (exp-time) algorithm for �	CKT-SAT

� NEXP ⊄ �

1st step

∃Fast (exp-time) algorithm for ACC0 CKT-SAT 

2nd step

Suppose � = P/poly



Proof Overview:

Fast CKT-SAT algorithm � NEXP lower bounds

NEXP ⊂ P/poly & ∃fast CKT-SAT algorithm

Assumption

1. efficient & local reduction to 3SAT [Tourlakis ’00, 

Fortnow, Lipton, van Melkebeek, & Viglas ‘05]

2. witness circuits for NEXP problem 

[Impagliazzo, Kabanets & Wigderson ‘02]

Ingredients

NTIME[2n]⊆ NTIME[2n/n8], 

contradicts the Nondet. Hierarchy Theorem!

Goal
⊊NTIME[2n] ⊊ NTIME[2n/n]



Efficient & Local Reduction to 3SAT

∃(2n
・poly(n))-time reduction R s.t. ∀L ∊ NTIME[2n],

x ∊ L ⇔ R(x) = φx∊ SAT

∃poly(n)-time algorithm M s.t.

Theorem [Tourlakis ’00, 

Fortnow, Lipton, van Melkebeek & Viglas ‘05]

Rx 3CNF: φ
x

= C
1 
∧ C

2 
∧…

n 2n
・poly(n)

n

M
x

i

n+O(log n)

i-th clause Ci



Witness Circuit for NEXP

NEXP⊂P/poly � NEXP has poly-size witness circuit

Theorem [Impagliazzo, Kabanets & Wigderson ’02]

Class NEXP

L∈NEXP

Def

x∊L

x∉L

∃w R(x,w) = 1

∀w R(x,w) = 0
|w| = 2poly(|x|)

Exponentially 

long witness!



Witness Circuit for NEXP

NEXP⊂P/poly � NEXP has poly-size witness circuit

Theorem [Impagliazzo, Kabanets & Wigderson ’02]

Class NEXP

L∈NEXP

x∊L

x∉L
Def

∃Wx R(x,Wx(0…0)…Wx(1…1)) = 1

∀Wx R(x,Wx(0…0)…Wx(1…1)) = 0

|W| = poly(|x|)

poly-size witness circuit



Fast Algorithm for ∀L∈NTIME[2n]

Algoritm: Hierarchy Breaker

Running Time = O(2n/n8)

� Contradiction with Nondet. Hierachy Theorem!

Input: x∈{0,1}n

1. Nondet.ly guess witness circuit Wx

2. Construct a circuit DWx: {0,1}n+O(log n)→{0,1}

- s.t. ∃i, DWx(i) = 1 ⇔ x∉ L  (next slide for details)

3. Apply CKT-SAT algorithm A to A(DWx) 

- Output “Yes”⇔ A(DWx) = 0  (⇔∀i, DWx(i) = 0)



Circuit DWx

2. Construct a circuit DWx: {0,1}n+O(log n)→{0,1}

s.t. ∃i, D
Wx

(i) = 1 ⇔ x∉ L

Input: i∈{0,1}n+O(log n)

1. Print i-th clause Ci of φx by M
n

M
x

i

n+O(log n)

x2∨x5∨x8

2. Check if Ci is NOT satisfied by Wx

φx∈SAT ⇔x∈L

3. Output 1 ⇔ Ci is NOT satisfied



What’s D
Wx

doing?

x
2
∨x

5
∨x

8
￢x

1
∨x

6
∨x

11 ∧ ∧φx = ∧… x
1
∨￢ x

6
∨x

11 …∧

2npoly(n)

Sat. by W
x

Not Sat. by W
x
! Sat. by W

x

x
1
∨x

15
∨x

9
x
8
∨x

4
∨￢ x

3 ∧ ∧φx = ∧… x
1
∨￢ x

6
∨x

11 …∧

2npoly(n)

Sat. by W
x

Sat. by W
x

Sat. by W
x

UNSAT!

SAT!

Case: φx is NOT satisfiable by any Wx

∃clause C
i
not sat. ⇔∃i, D

Wx
(i) = 1

Case: φx is satisfiable by some Wx

∀clause C
i
sat. ⇔∀i, D

Wx
(i) = 0

W
x
is inconsistent = D

Wx
is SAT



Fast Algorithm for ∀L∈NTIME[2n]

Algoritm: Hierarchy Breaker

Running Time = O(2n/n8)

� Contradiction with Nondet. Hierachy Theorem!

Input: x∈{0,1}n

1. Nondet.ly guess witness circuit Wx

2. Construct a circuit DWx: {0,1}n+O(log n)→{0,1}

- s.t. ∃i, DWx(i) = 1 ⇔ x∉ L

3. Apply CKT-SAT algorithm A to A(DWx); 

- Output “Yes”⇔ A(DWx) = 0  (⇔∀i, DWx(i) = 0)



Summary

• Williams’ argument

≈ fast nondet. algorithm from CKT-SAT

• Open Problem: Fast CKT-SAT algorithms?

– NC1, or P/poly?

– Algebrization barrier in NEXP vs. P/poly    

[Aaronson & Wigderson ‘08].



Concluding Remarks

• High-level approach involves algorithms

(in bizarre computing models)

– Koebler-Watanabe: n100-size lower bound in ZPPNP

• ZPPNP algorithm for circuit learning

– Williams: superpoly-size ACC0 lower bound in NEXP

• Fast non-det. algorithm from CKT-SAT

• “Hardness” is not enough, must put it into NP!

– Algorithms!


